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Abstract

Neurological diseases are due to the loss of structure or function of neurons that eventually leads 

to cognitive deficit, neuropsychiatric symptoms, and impaired activities of daily living. Identifying 

sensitive and specific biological and clinical markers for early diagnosis allows recruiting patients 

into a clinical trial to test therapeutic intervention. However, many biomarker studies considered a 

single biomarker at one time that fails to provide precise prediction for disease age at onset. In this 

paper, we use longitudinally collected measurements from multiple biomarkers and measurement 

error-corrected clinical diagnosis ages to identify which biomarkers and what features of 

biomarker trajectories are useful for early diagnosis. Specifically, we assume that the subject-

specific biomarker trajectories depend on unobserved states of underlying latent variables with the 

conditional mean follows a nonlinear sigmoid shape. We show that peak degeneration age of the 

biomarker trajectory is useful for early diagnosis. We propose an Expectation-Maximization (EM) 

algorithm to obtain the maximum likelihood estimates of all parameters and conduct extensive 

simulation studies to examine the performance of the proposed methods. Finally, we apply our 

methods to studies of Alzheimer’s disease and Huntington’s disease and identify a few important 

biomarkers that can be used for early diagnosis.
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1. Introduction.

Neurological diseases, such as Huntington’s disease (HD), Alzheimer’s disease (AD), and 

Parkinson’s disease, involve the loss of structure or function of neurons that eventually leads 

to cognitive deficit, motor impairment, neuropsychiatric symptoms, and impaired activities 

of daily living. There are currently no disease-modifying treatments for these disorders since 

damaged neurons cannot be replaced or reproduced. The pathophysiological process of the 

diseases is thought to begin years before irremediable neuronal loss and cognitive deficits 

manifest (Sperling et al., 2011). Therefore, early diagnosis offers an opportunity for effective 

therapeutic intervention because the cognitive function might be preserved at the highest 

level possible before irreversible damage has occurred.

To develop effective therapeutics, it is important to identify biomarkers with the most rapid 

change at the earliest age and also associated with clinical diagnosis. Many subtle clinical 

features and biomarkers of preclinical pathological change can potentially serve as early 

diagnostic or prognostic indicators. For example, prognostic biomarkers in the motor, 

imaging, and cognitive domains are suggested to be useful for predicting early motor or 

cognitive abnormalities in HD (Paulsen, Long, Ross et al. 2014). For AD, various 

neurobiological measures, such as cerebrospinal fluid levels of Aβ42 and total tau protein, 

show preclinical alterations that predict development of early AD symptoms (Hampel et al., 

2008). However, all these findings are based on isolated analysis and it remains largely 

unknown which biomarkers manifest significant changes prior to disease onset and for how 

long before the onset.

To evaluate the relationship of changes in biomarkers and clinical diagnosis of AD, Hall et 

al. (2000, 2001, 2003) modeled longitudinal measurements of one or two biomarkers by 

change point polynomial mixed models, where the change point is associated with the age of 

clinical diagnosis that is assumed to be observed for all subjects. Later, Jacqmin-Gadda, 

Commenges and Dartigues (2006) extended the methods to jointly model measurements of a 

biomarker and right-censored age of clinical diagnosis. However, the change point only 

indicates the change of pattern of the biomarker over time and may not necessarily be the 

acceleration time of the biomarker change. Recently, an imputation-based analysis was used 

in Bateman et al. (2012). In this method, the biomarker measurements were first aligned by 

the age from the expected AD clinical diagnosis, and a cubic polynomial mixed effects 

model was used to model the biomarker trajectory retrospectively. The earliest time prior to 

the AD onset where a difference can be detected between mutation carriers and non-carriers 

and when the maximal difference is detected were considered as critical time points. There 

are several limitations with this analysis. First, participants (children of parents who had AD 

and carried mutations associated with AD) were recruited before being diagnosed with AD, 

thus their onset ages were censored. Bateman et al. (2012) imputed participant’s AD age at 
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onset using their parents’ age at onset since their approach does not handle censoring. This 

imputation may introduce inaccuracy into the analysis. Second, the analysis in Bateman et 

al. (2012) did not model multiple biomarkers simultaneously.

To model both longitudinal measurements and disease onset, joint modeling approaches, 

including selection models and pattern mixture models (Little, 1995; Hogan and Laird, 

1997; Tsiatis and Davidian, 2004), have been extensively used. However, since these joint 

modeling approaches rely on some shared random effects to link longitudinal biomarkers 

with disease age at onset, they are not useful to identify any subject-specific biomarker 

features that are present prior to the disease onset. Furthermore, these methods do not handle 

the complication that the disease age at onset may be subject to measurement error, as 

commonly encountered in the studies of neurodegenerative diseases (Garcia, Marder and 

Wang, 2017).

In this paper, we model longitudinal measurements of multiple biomarkers and error-

corrected clinical diagnosis age simultaneously. Our goal is to identify which biomarkers 

and what features of biomarker trajectories are useful for early diagnosis and 

characterization of disease progression. Specifically, to capture nonlinear sigmoid shape of 

the biomarker degeneration as observed in empirical studies (Jack et al., 2010; Jedynak et 

al., 2012), we assume that subject-specific trajectories of biomarkers are related to latent 

states of underlying neuron masses. This assumption is motivated by neural mass models 

(Hopfield, 1982), where neurons are considered as binary units in an active or inactive state 

and the population-level model of their activities is considered as aggregate activities of 

massive number of neurons. Furthermore, we allow biomarker-specific lead time between 

the disease onset and the peak degeneration ages of the biomarkers (inflection points where 

the maximal change of biomarker occurs) to vary across biomarkers and allow inflection 

points to depend on subject-specific covariates. We show that biomarker inflection points are 

useful for early diagnosis of neurological diseases. In addition, since biomarker at the peak 

degeneration age is most sensitive to change and easiest to be detected, inflection points 

indicate the optimal timing of intervention when designing clinical trials if the inflection 

point occurs prior to disease onset and closely monitoring is available. Furthermore, we 

show that the biomarker-specific lead time is an important feature to characterize disease 

progression.

To accommodate measurement error of the clinical diagnosis age, we assume an additive 

measurement error model. To bypass a difficult nonlinear optimization in our modeling, an 

EM algorithm with explicit solutions in the M-step is developed for maximum likelihood 

estimation. We conduct simulation studies to examine the performance of the proposed 

estimators and show that Bateman et al. (2012) approach to impute unobserved disease onset 

ages may lead to large bias in the biomarker trajectories and an increased variability in the 

estimation of parameters. Finally, we apply our methods to two studies of neurodegenerative 

diseases (HD and AD), where we identify biomarkers with peak degeneration ages occurring 

significantly earlier than clinical disease onset so that they can potentially serve as early 

diagnostic markers.
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2. Motivating examples.

2.1. HD and Predictors of Huntington’s Disease (PREDICT-HD) study.

HD is an autosomal dominant neurodegenerative disease caused by an expansion of the 

cytosine-adenine-guanine (CAG) in the first exon of huntingtin (HTT) gene (MacDonald et 

al., 1993). Whereas unaffected persons have a range of 6–35 CAG repeats, persons affected 

with HD have 36–121 CAG repeats length (Kremer et al., 1994; Rubinsztein et al., 1996). 

HD has a broad impact on a person’s functional abilities and usually results in movement, 

cognitive and psychiatric impairments. Even though CAG repeats length and baseline age 

are recognized as important predictors of HD diagnosis, much effort is needed to refine the 

prediction of the age at motor onset.

The PREDICT-HD study is a prospective observational study of premanifest HD individuals 

who carry an expansion of CAG repeats (thus at risk of HD) but without a clinical diagnosis 

at the baseline (Paulsen, Long, Johnson et al. 2014). These pre-symptomatic, gene-positive 

individuals were recruited starting 2002 and followed for up to 12 years. During the follow-

up period, various longitudinal measures in five domains (motor, cognitive, psychiatric, 

functional, and imaging) were collected. The onset of HD was determined by the motor 

symptoms evaluated on the Unified Huntington’s Disease Rating Scale (UHDRS) by a 

trained neurologist. A subject rated as 4 on the diagnostic confidence level (DCL) is 

diagnosed with HD. However, the presence of variation in patients’ motor symptoms and 

raters’ diagnosis has made clinical diagnosis difficult (Garcia et al. 2017): a patient could 

receive a DCL of 4 (diagnosed with HD) at one visit, but fail to reach a DCL of 4 at the next 

visit if the patient expresses less motor symptoms (free of HD diagnosis). In the PREDICT-

HD study, 63 (4.6%) patients had such reversion of diagnosis. Therefore, the observed HD 

age at onset determined by a neurologist is an approximation of a patient’s true disease age 

at onset. Our proposed method will account for the random measurement errors in diagnosis 

age using a linear model with a known variance estimated from the incidences of disease 

status change in the PREDICT-HD study.

2.2. AD and Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

AD is an irreversible neurodegenerative disease that results in a loss of cognitive function 

due to the deterioration of brain neuronal synapses. The progression of AD has been divided 

into three phases. The first phase is a pre-symptomatic phase where individuals are 

cognitively normal but some have AD pathological changes. The second prodromal phase, 

often referred to as mild cognitive impairment (MCI), is characterized by the onset of the 

earliest cognitive symptoms that do not meet the criteria for dementia. The final phase in the 

evolution of AD is dementia, defined as impairments in multiple domains that are severe 

enough to produce loss of function. To determine the sequence of pathological changes of 

AD, a sigmoid model was proposed and widely used for major AD biomarkers (Jack et al., 

2010). Although some agreement between the temporal ordering of major biological cascade 

has been reached, there is no method to precisely estimate the lead time between when the 

peak biomarker degeneration occurs (inflection point) and dementia diagnosis, accounting 

for censoring and error in dementia diagnosis.
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Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early AD. In three 

phases of the study (ADNI1, ADNI GO, and ADNI2), early mild cognitive impairment 

(EMCI), MCI, mild AD and normal control subjects were recruited. Biomarkers, such as 

brain scans, genetic profiles, and biomarkers in blood and cerebrospinal fluid, were collected 

to track the progression of the disease. MCI was determined if the subject has Mini-Mental 

State Exam (MMSE) score between 24–30, a memory complaint, objective memory loss 

measured by education adjusted scores on Wechsler Memory Scale Logical Memory II, a 

Clinical Dementia Rating (CDR) of 0.5, absence of significant levels of impairment in other 

cognitive domains, essentially preserved activities of daily living, and an absence of 

dementia. Dementia was determined if the subject has MMSE score between 20–26, CDR of 

0.5 or 1.0, and meets NINCDS/ADRDA (National Institute of Neurological and 

Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders 

Association) criteria for probably AD.

Similar to HD, random variations of the clinical diagnosis of MCI and dementia were 

observed. Sources of the variations include normal aging independent of AD, “cognitive 

reserve” due to education-linked factors, and disease heterogeneity (Nelson et al., 2012). In 

the ADNI study, 75 (4.3%) patients had received a diagnosis of MCI or AD at one visit, but 

was then diagnosed as normal at the next visit. Similarly to the PREDICT-HD study, the 

known variance in the measurement error model can be estimated using the observations of 

disease status change in the ADNI study.

3. Method.

3.1. Latent suppression state model for progression markers.

We consider K neurological disease markers measured over time from n independent 

subjects. For subject i, we let Yik(t) be the measurement from the kth marker at age t for k = 

1,…, K and let Wi denote the underlying unobserved true disease age at onset. Additionally, 

we let Zi denote a vector of baseline covariates for subject i. Our first model is to assume 

that in the population the disease onset follows W i N θTXi, σW
2 , where Xi = 1, Zi

T T
. Given 

Wi and Zi, our models for K disease markers are motivated by the neural mass models in 

Hopfield (1982). Neural mass model was used to describe the aggregate activities of massive 

number of neurons. This approach motivates the population-level model by considering 

neurons as binary units in an active or inactive state. Assuming neuronal responses rest on a 

threshold of activity, any unimodal distribution of thresholds results in a sigmoid activation 

function at the population, following trajectories similar to those observed empirically for 

many neurological disease progression markers (Jack et al., 2010).

Specifically, we assume that marker Yik(t) reflects the activity levels of neuron mass at age t 
and such levels further depend on the latent suppression status as suggested in the neural 
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mass model. The suppression status of the neuron mass may be permanent or instantaneous, 

where the former most likely associates with susceptibility to neurodegeneration and the 

latter most likely associates with progression of neurodegeneration. Let Qik indicate the 

presence of the permanent suppression of the neuron mass (for instance, due to genetic 

mutation, neuronal injury, or nerve damage) and let Hik(t) indicate the instantaneous 

suppression at age t (for instance, due to neurofibrillary tangles). When subject i has no 

permanent suppression (i.e.,Qik = 0), or does not experience any instantaneous suppression 

at age t (i.e., Hik(t) = 0), we assume a linear declination trend due to normal aging process as 

suggested in Fjell et al. (2009). That is, when Qik = 0 or Hik(t) = 0, we assume a linear 

mixed effects model for Yik(t):

Yik(t) = α0k + βkt + νik + ϵik(t),

where νik is the subject- and marker-specific random intercept following a mean-zero 

normal distribution with unknown variance σkν
2 , and ∊ik(t) is a white noise process with 

variance σkϵ
2 . When suppression is present at age t, either due to the permanent suppression 

(i.e., Qik = 1) or the instantaneous suppression at age t (i.e., Qik = 0, Hik(t) = 1), a further 

reduction in Yik(t) occurs due to disease degenerative process (Fjell et al., 2009). Thus, we 

assume that the marker level at age t is further reduced by a subject-specific value, α1k
T Xi. In 

other words, depending on the latent suppression states, our progression model assumes

Yik(t) = α0k + α1k
T Xi Qik + 1 − Qik Hik(t) + βkt + νik + ϵik(t)

for k = 1,…, K.

To model the distribution of Qik and Hik(t), we first assume that Qik is independent of Wi 

and satisfies the following logistic regression model:

logitPr Qik = 1 Xi = ηk
TXi .

Since the instantaneous suppression is most relevant to the disease progression, we let Hik (t) 
depend on disease age at onset Wi, through

Pr Hik(t) = 1 Qik = 0, Wi = 1
1 + exp −bk t − μk − Wi

,

where bk is an unknown parameter. Since the above sigmoidal model has an inflection point 

at ti* = μk + W i, the risk of experiencing an instantaneous suppression of the neuron mass 

increases over age, accelerates near age ti* until reaching its peak at ti*, and then the risk 

remains to increase but at a decelerated speed afterwards. Moreover, if μk < 0, the peak 

suppression age has a lead time of |μk| prior to the disease onset. This suggests that the 

marker degeneration peaks before the disease onset, so it can potentially be used for early 
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diagnosis. On the contrary, if μk > 0, the inflection point age is after Wi, so the marker 

degeneration peaks after the disease onset, suggesting that this marker may be more likely to 

manifest a post-disease onset effect. Clearly, |μk| gives a magnitude of the lead time or lag 

time. For the purpose of early diagnosis, we aim to identify the progression marker with μk < 

0 and estimate the magnitude of |μk| to inform clinical trial design and recruitment.

Remark 3.1. From the proposed latent state models, the conditional mean for the progression 

marker Yik(t) given Wi but marginalized over Qik and Hik (t) is given by

α0k +
α1k

T Xi

1 + exp ηk
TXi

exp ηk
TXi + 1

1 + exp −bk t − Wi − μk
+ βkt .

Thus, the smoothed trend of the marker measurement Yik(t) is a sigmoid function with a 

linear drift over age. The peak degeneration age, ti* = μk + W i, coincides with the inflection 

point of the smoothed marker trajectory, which is the age of the maximal deterioration of the 

trajectory. Therefore, by monitoring the marker values with μk < 0 and identifying the peak 

age of deterioration, one can make early diagnosis with |μk| time units ahead of the disease 

onset in individuals. Note that existing literature suggests that many neurological biomarkers 

manifest a nonlinear sigmoid shape (Jack et al. 2012; Jedynak et al. 2012; Samtani et al. 

2012; Paulsen, Long, Ross et al. 2014), which is consistent with our model of Yik(t) given 

Wi.

3.2. Likelihood-based estimation and inference.

In our applications of HD and AD studies, the biomarkers are collected longitudinally at 

discrete time points and some biomarkers may not be measured at the same time as the 

others. We assume that for i = 1,…, n, biomarker k (k = 1,…, K) is measured at 

ti1k, …, ti, nik, k , where nik is the number of measurements. We use Yijk for Yik (tijk). 

Another complication commonly encountered in the studies of neurological diseases is that 

the disease diagnosis relies on clinical assessments which are known to be imprecise. 

Therefore, the clinically diagnosed age at onset, denoted by Ti, is the true age at onset 

measured with error. Particularly, we assume that the measurement error δi is additive and 

normally distributed with known constant variance σδ
2 that can be determined apriori using 

observed data of clinical diagnosis or from existing literature, i.e.,

Ti = Wi + δi,   δi N 0, σδ
2 .

Additionally, we assume that Ti is subject to right censoring due to the end of the study or 

patient’s loss of follow-up. Let Ci denote the censoring age, such that we observe 

Y i ≡ min T i, Ci  and Δi ≡ I(Ti ≤ Ci). The observed data from subject i consist of

𝒪i = ti jk, Yi jk, Zi, Yi, Δi:k = 1, …, K; j = 1, …, nik .
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Let ϕ(·; σ2) and Φ(·; σ2) denote the density function and cumulative distribution function of 

N(0, σ2), respectively. Write αk = (α0k, α1k). Define gijk(Wi;μk,bk) = exp{−bk(tijk − Wi − 

μk)},

Mi jk = Yi jk − α0k − βkti jk,

Ai jk νik; αk, σkϵ
2 = ϕ Mi jk − νik − α1k

T Xi; σkϵ
2 ,

Bi jk νik; α0k, σkϵ
2 = ϕ Mi jk − νik; σkϵ

2 ,

and

Di jk νik, Wi; μk, bk, αk, σkϵ
2 =

gi jk Wi; μk, bk Bi jk νik; α0k, σkϵ
2 + Ai jk νik; αk, σkϵ

2

1 + gi jk Wi; μk, bk
.

Assuming that Ci is independent of Ti, Wi, and Yijk given Zi, the observed-data likelihood 

function concerning the parameters αk, βk, σkν
2 , σkϵ

2 , ηk, μk, bk  (k = 1,…, K) and θ, σW
2  is 

given by

Ln = ∏
i = 1

n ∫Wi
∏

k = 1

K
qk Wi; ηk, μk, bk, αk, σkϵ

2 , σkν
2 hi Wi; σW

2 , σδ
2 dWi,

where

qk Wi; ηk, μk, bk, αk, σkϵ
2 , σkν

2

= ∫νik

exp ηk
TXi ∏ j = 1

nik Ai jk νik; αk, σkϵ
2 + ∏ j = 1

nik Di jk νik, Wi; μk, bk, αk, σkϵ
2

1 + exp ηk
TXi

× ϕ νik; σkν
2 dνik,

and

hi Wi; σW
2 , σδ

2 = ϕ Wi − θTZi; σW
2 ϕ Yi − Wi; σδ

2 ΔiΦ Wi − Yi; σδ
2 1 − Δi .

We propose to maximize the likelihood function for parameter estimation. To compute the 

maximum likelihood estimates, we apply an EM algorithm treating Qik, Vik, 
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Hi1k, …, Hi, nik, k, and Wi (i = 1,…, n; k = 1,…, K) as missing data, where Hijk = Hik(tijk). The 

details of the EM algorithm are described in the Appendix A.

Asymptotically, all parameter estimators are consistent and efficient following the standard 

maximum likelihood theory, provided that the model parameters are identifiable and the 

Fisher information matrix is non-singular. In particular, we prove the identifiability in 

Section S.1 of the supplemental materials. Due to the lack of an analytical form, we estimate 

the covariance matrix of the estimators through the nonparametric bootstrap. Specifically, 

for each bootstrap, we sample n subjects with replacement. The covariance matrix is then 

estimated by the sample covariance matrix of the bootstrap estimators.

3.3. Early diagnosis of disease onset.

Given the fitted model, the identified biomarkers with peak degeneration ages occurring 

before the disease onset can be used for disease monitoring and contribute to early 

diagnosis. In addition, we are able to predict the precise disease age at onset given 

observations of biomarkers. For a future subject who has not been diagnosed at age t with 

biomarker measurements Yk ≡ Y1k, …, Ynk, k  (k = 1,…, K) measured at t1k, …, tnk, k prior to 

age t, the disease age at onset can be predicted given the biomarkers and the diagnosis 

information. That is, we predict the disease age at onset W by the posterior mean of W given 

the biomarker measurements and the diagnosis information, E(W|Y1,⋯, YK, T ≥ t), which is 

given by

∫ wψ(w)dw,

where ψ(w) is the posterior density function of the disease age at onset W that is given by

ϕ w − θTZ; σW
2 Φ w − t; σδ

2 ∏k = 1
K qk w; ηk, μk, bk, αk, σkϵ

2 , σkν
2

∫ ϕ W − θTZ; σW
2 Φ W − t; σδ

2 ∏k = 1
K qk W; ηk, μk, bk, αk, σkϵ

2 , σkν
2 dW

,

and the integral can be evaluated by numeric integration with Gauss-Hermite quadratures.

4. Simulations.

We conducted simulation studies to examine the performance of the proposed methods. A 

detailed description of the simulation protocol is given in Section S.2 of the supplementary 

materials. We considered K = 2 biomarkers and generated two independent covariates Zi1 ~ 

N(0,1) and Zi2 ~ Bernoulli(0.5) for i = 1,…, n. We generated the censoring age Ci from 

Uniform[0, 10]. For each biomarker k and each subject i, we randomly chose nik from {3,…, 

10} with equal probabilities and randomly generated tijk (j = 1,…, nik) independently from 

Uniform[0, Ci].
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We generated the data from the proposed models, with the values of the parameters given in 

the second column of Table 1 and σδ
2 = 0.2. The censoring rate is about 30%. We set n = 200 

or 400 and used 1,000 replicates. The algorithm was regarded as converged if the maximum 

of the norms of the parameter differences in adjacent iterations is smaller than 0.001. For 

each simulated dataset, 100 bootstrapped datasets were used for variance estimation.

Tables 1 summarizes the simulation results, where the algorithm converged for all simulated 

datasets. Bias and SE are the median bias and standard error, respectively, of the parameter 

estimator, SEE is the median of the standard error estimator, and CP is the coverage 

probability of the 95% confidence interval. The biases for all parameter estimators are small 

and decrease as n increases. The variance estimators for α0k, α1k, βk, μk, bk, θ, and σW
2  are 

accurate, especially for large n. The variance estimator for ηk slightly overestimates the true 

variabilities, but it gets more accurate as sample size increases. The confidence intervals 

have satisfactory coverage probabilities when the sample size is large (n = 400).

To evaluate the performance of the proposed prediction procedure, for each simulation 

replicate, we generated an independent data set of sample size 2,000. The data were 

generated in the same manner, except that we included only censored subjects. We predicted 

the disease age at onset for the censored subjects in the new dataset using the parameter 

estimators from the original replicate and compared the predicted ages at disease on set with 

the true disease onset ages. In addition, we calculated the average logarithmic score (Good, 

1952; Bernardo, 1979; Gneiting, Balabdaoui and Raftery, 2007), which is the average of the 

negative logarithm of the predictive density function evaluated at the true disease onset age, 

such that a smaller value indicates a better fit. We compared the results with the proposed 

models with both biomarkers and one biomarker only.

Table 2 shows the mean prediction error, adjusted standard deviation (adjusted SD), and the 

mean adjusted logarithmic score (adjusted LS), where the adjusted SD is calculated as the 

squared root of mean squared prediction error minus the intrinsic prediction error variability 

that is estimated as the mean squared prediction error using the conditional mean of the 

disease age at onset given the diagnosis, and the adjusted LS is calculated as the logarithmic 

score minus that from the two-biomarker model with the true parameter values. The biases 

from all models are small. The adjusted SD and adjusted LS decrease as n increases. The 

adjusted LS based on both biomarkers is lower than those based on the models with one 

biomarker. Compared to those from the models with one biomarker only, the prediction 

based on both biomarkers has smaller variability: for n = 400, the improvement in prediction 

efficiency of using both biomarkers is about 15%.

5. Applications.

5.1. HD and PREDICT-HD study.

We applied the proposed methods to the aforementioned PREDICT-HD study. We included 

three motor markers (Ocular, Brady, and Chorea) measuring impairment in movement and 

three cognitive markers (SDMT, Stroop-WO, and Smell-ID) measuring impairment in 

cognition. Ocular, Brady, and Chorea are the ocular, bradykinesia, and chorea subscales 
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from the UHDRS, reflecting ratings of eye movement and tracking, abnormal slowness or 

rigidity of movement, and abnormal involuntary movement disorder, respectively 

(Huntington Study Group, 1996). SDMT is the symbol digit modalities test that measures 

working memory, complex scanning, and processing speed. Stroop-WO is the stoop word 

test that measures basic attention and processing speed. Smell-ID is the University of 

Pennsylvania smell identification test that measures the olfactory recognition. The covariates 

Zi for HD age at onset include baseline age, years of education, gender, and length of CAG 

repeats.

We included 1,073 gene-positive subjects with more than 35 CAG repeats at huntingtin gene 

in the analysis. During the follow-up, 225 (21%) subjects developed HD and the age at 

disease onset is defined as the age of the first observation with DCL=4. For each marker, on 

average more than three measurements are available for each subject. We estimated the 

magnitude of measurement error σδ
2 of HD diagnosis from the PREDICT-HD study. In 

particular, we fitted the adjacent observations with status change (from DCL<4 to DCL=4, 

or reverse) by a generalized linear model to obtain σδ
2 = 0.324. The details of the estimation 

procedure are given in Section S.3 of the supplemental materials.

Table 3 shows the estimation results for various parameters associated with the peak 

degeneration ages and HD age at onset, where 1,000 bootstrap samples were used for 

variance estimation. Male subjects have later HD age at onset than females. Longer years of 

education and shorter CAG repeats length are associated with later HD age at onset. The 

inflection of the three motor measures occur close to HD age at onset, with the 95% 

confidence intervals of the lead times containing zero. These results are expected since the 

motor scores measure a patient’s motor symptoms and HD diagnosis is also mainly based on 

motor function. In addition, this finding is also consistent with the existing literature 

suggesting that subtle motor abnormalities accelerate just prior to diagnosis (Long et al., 

2014). The symbol digit modalities and stroop word cognitive tests, which have respective 

lead times approximately 2 and 1.5 years before HD onset and significantly earlier than HD 

onset, can be candidate markers for early detection of HD diagnosis.

Next, we examined the differences of biomarker values and peak degeneration ages among 

subgroups of subjects. Figure 1 shows the average estimated biomarker values among the 

subgroups of subjects with different CAG repeats length. Subjects with a longer CAG 

expansion are associated with an earlier HD age at onset and an earlier peak degeneration 

age for all considered biomarkers. In particular, subjects with CAG expansion < 41, 41 ≤ 

CAG expansion < 43, and CAG expansion ≥ 43 have peak degeneration ages of symbol digit 

modalities test at approximate 57, 50, and 41 years old, respectively, with corresponding 

scores 46, 44, and 42. Those subjects have peak degeneration ages of stroop word cognitive 

test at approximate 58, 51, and 42 years old, with corresponding scores 90, 86, and 84.

Finally, we examined the performance of the proposed methods on the prediction of HD age 

at onset given the biomarker measurements. Figure 2 presents the difference of the predicted 

HD age at onset and the observation age for each individual. For the non-censored subjects, 

the difference between the predicted and observed HD age at onset is within the 
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measurement variability of Ti (within the distance of σδ
2 + σW

2 ). For the censored subjects, 

most of the predicted HD age at onset is beyond the lower limit of the censoring age 

considering variability of the disease age at onset (i.e., beyond censoring age minus 

σδ
2 + σW

2 ). The proposed methods thus provide adequate fit to the PREDICT-HD data.

5.2. AD and ADNI study.

We applied the proposed methods to the aforementioned ADNI study. We analyzed the 

combined MCI and AD as a composite event, which serves as an alternative definition of 

early AD as suggested by Dubois et al. (2007). We considered four markers: the Montreal 

Cognitive Assessment (MOCA) that assesses several cognitive domains; the Clinical 

Dementia Rating Sum of Boxes (CDRSB) that measures the staging severity of dementia; 

the Functional Activities Questionnaire (FAQ) that serves a screening tool for evaluating 

activities of daily living; and the Aβ42 protein level (ABETA) measured from the 

cerebrospinal fluid. We associated the markers and early AD age at onset to baseline age, 

gender, education, number of APOE ∊4 alleles, baseline Alzheimer’s Disease Assessment 

Scale 11 terms total scores (TOTAL11), and baseline FAQ.

We included 414 subjects who were cognitively normal at the baseline, out of whom 87 

(21.0%) subjects developed early AD during the follow-up. For each marker, more than two 

measurements are available for each subject. We estimated the magnitude of the 

measurement error using the generalized linear model as described in Section S. 3 in the 

supplemental materials to obtain σδ
2 = 1.47.

Table 4 shows the estimation results of various parameters associated with the peak 

degeneration ages and age at early AD onset. Carriers of APOE ∊4 alleles have a younger 

early AD age at onset than non-carriers, and larger values of baseline TOTAL11 and 

baseline FAQ are associated with younger age at onset. The peak degeneration ages of 

MOCA, FAQ, and CDRSB occur later than early AD onset. For ABETA, the peak 

degeneration occurs approximately 12 years before onset, suggesting that it is a candidate 

for early detection of early AD. This finding agrees with the hypothesis that Aβ-plaque 

deposits are early events in the AD cascade occurring before the appearance of clinical 

symptoms (Jack et al., 2010; Bateman et al., 2012).

The estimated lag times also have implications on clinical trials design. The peak 

acceleration of MOCA, FAQ and CDRSB occurs within about 1.5 years after diagnosis. A 

clinical trial designed to test changes in these measures in response to a therapy may recruit 

newly diagnosed MCI or AD patients within about 1.5 years to improve power.

Figure 3 shows the average estimated biomarker values among carriers and non-carriers of 

APOE ∊4 alleles. Carriers are associated with a younger age at onset and an earlier peak 

degeneration age for all considered biomarkers. In particular, carriers and non-carriers have 

a peak ABETA acceleration at approximate 74 and 76 years of age, respectively. Early AD 

onset occurs approximately at 82 and 84 years for the two groups. The corresponding Aβ42 

cutoff values are 143 and 183 pg/mL, which are slightly lower than the recommended 
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threshold for using Aβ42 to define AD in Shaw et al. (2009) (Aβ42 < 192 pg/mL defined as 

AD, estimated as the value that maximizes the area under the receiver operating 

characteristic curve for the detection of AD). However, since the diagnostic test based on 

this threshold has a relatively high sensitivity (96.4%) and low specificity (76.9%), the 

reported cutoff in Shaw et al. (2009) may be anti-conservative.

Lastly, to see the potential bias of using parent’s disease age at onset to impute offspring’s 

AD age at onset as the analyses performed in Bateman et al. (2012), we simulated parent’s 

age at onset and fit the proposed model. In particular, we assumed that the parent’s age at 

onset has the same mean as the child’s age at onset estimated from the proposed approach 

with a correlation of 0.3 or 0.65. For censored subjects, we imputed their age at onset by 

their parents’ early AD age at onset. The simulated parent’s onset age is on average 5.5 and 

4.3 years different from the child’s onset age. The red solid and dashed curves in Figure 4 

show the average estimated values of biomarkers with censored onset ages replaced by 

imputation as in Bateman et al. (2012), where the black curves show our proposed approach 

that handles censoring appropriately. The horizontal axis is anchored at the estimated age at 

onset of early AD (years to onset of early AD). For both scenarios of correlation, imputing 

censored ages at onset leads to a large bias of the trajectories of biomarkers, and the 

estimated biomarker lead times can be shifted.

6. Discussion.

In this paper, we proposed a latent suppression state model to identify useful biomarkers for 

early disease diagnosis and estimate lead time to disease onset or lag time post onset. The 

proposed model is motivated from biological models of neural masses, and facilitates 

inference for modeling nonlinear sigmoid shapes of biomarker trajectories observed 

empirically. Furthermore, we proposed a computationally efficient EM algorithm with 

explicit solutions in the M-step and the evaluation of conditional expectation for the latent 

variables conducted using Gaussian quadratures. The numerical integration is at most two-

dimensional, even if a large number of biomarkers are included.

For the asymptotic theory to hold, we require at least two measurements per biomarker for 

each subject. Empirically, we found that two measurements per biomarker for each subject 

provided stable estimation results for n = 400 (99.5% of the simulated datasets converged in 

simulated settings). This requirement on the number of measurements usually holds for 

neurological disease studies with relatively closely monitoring, as for the PREDICT-HD and 

ADNI studies.

A number of parametric assumptions are suggested to model the disease onset age and 

biomarker measurements. For example, we assume a functional relationship between the 

biomarker and suppression as well as the age at disease onset and measurement age. This 

parametric assumption is in fact very simple and standard and it yields a sigmoid shape of 

the observed biomarker with a peak degeneration age that is consistent with empirical 

observations and existing literature. In addition, we assume that measurement error for the 

disease onset age is normal distributed with known variance. In practice, some of these 
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parametric assumptions may be violated and further investigation may be needed to study 

the performance of the proposed methods under mis-specified models.

In the PREDICT-HD study, we visualize the fit of the proposed model through comparing 

the predicted HD age at onset with the observation age graphically. We also examine the 

goodness of fit for the model of the biomarkers by plotting the residuals of the biomarker 

measurements against the ages at measurements (Rizopoulos, 2012, Chapter 6) in Figures S.

1 and S.2 in the supplementary materials. The proposed model is regarded as adequate since 

the predicted HD age at onset is consistent with the observation age, allowing for the 

existence of measurement errors, and the residuals are approximately randomly dispersed. A 

better model checking procedure may be developed to assess the goodness of fit of the 

proposed model.

In the ADNI study, we examined the performance of the imputation analyses in Bateman et 

al. (2012). Since the disease onset ages were observed in non-censored subjects, imputation 

was only applied to approximate disease onset for right-censored subjects. Even if the mean 

of the early AD age at onset was correctly specified, the trajectories of biomarkers were 

estimated with bias, and the inflection points were shifted (especially for Aβ42). Our 

proposed methods make use of the observed diagnosis ages in non-censored subjects, 

appropriately handle censoring for those who were not diagnosed, and yield biomarker 

trajectories and peak degeneration ages with better accuracy and precision than Bateman et 

al. (2012).

The proposed approach, which assumes a normal distribution for the disease age at onset, 

can be extended to accommodate other parametric distributions, semiparametric 

distributions, or nonparametric distributions. For example, a proportional hazards model 

may be assumed for the age of disease onset. In addition, we may extend the proposed 

approach to accommodate interval-censored disease age at onset.

We assumed that the lead times or lag times between the peak degeneration of the 

biomarkers and the disease onset are the same for all subjects. This assumption can be easily 

relaxed to allow for subject-specific lead or lag times. For example, the biomarker model of 

AD proposed by Jack et al. (2010) hypothesized that the lag period between Aβ-plaque 

formation and neurodegenerative cascade may vary among subjects, indicating differences in 

Aβ processing, brain resilience, or cognitive reserve. We may introduce subject-specific 

fixed effects and random effects to the sigmoid function to accommodate this general case, 

but with increased computational complexity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A:: DETAILS OF THE EM ALGORITHM

Denote Rijk = Qik + (1 − Qik) Hijk. The complete-data log-likelihood concerning the 

parameters is given by

∑
i = 1

n
logϕ Wi − θTZi; σW

2 + Δilogϕ Yi − Wi; σδ
2 + 1 − Δi

× logΦ Wi − Yi; σδ
2 + ∑

k = 1

K
∑

j = 1

nik
logϕ Mi jk − νik − α1k

T XiRi jk; σkϵ
2

+ logϕ νik; σkν
2 + Qikηk

TXi − log 1 + e
ηk
TXi + 1 − Qik

× ∑
j = 1

nik
1 − Hi jk bk Wi + μk − ti jk − log 1 + e

bk Wi + μk − ti jk .

Since the complete-data log-likelihood can be factorized into pieces concerning disjoint 

subsets of parameters, we obtain the estimates for subsets of the parameters separately in the 

M-step. Specifically, we update (αk,βk) by

∑
i = 1

n
∑

j = 1

nik
1 E Ri jk Xi

T ti jk

E Ri jk Xi E Ri jk XiXi
T E Ri jk ti jkXi

ti jk E Ri jk ti jkXi
T ti jk

2

−1

× ∑
i = 1

n
∑

j = 1

nik
Yi jk − E νik

Yi jkE Ri jk − E νikRi jk Xi

Yi jk − E νik ti jk

,

where E( ⋅ ) is the conditional expectation with respect to the observed data. We update σkϵ
2

by
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1
∑i = 1

n nik
∑

i = 1

n
∑

j = 1

nik
Mi jk

2 − 2Mi jkE νik + E νik
2 + α1k

T Xi α1k
T Xi − 2Mi jk E Ri jk + 2α1k

T XiE νikRi jk

and update σkν
2  by ∑i = 1

n E νik
2 /n. We update ηk by solving the equation

∑
i = 1

n
E Qik −

exp ηk
TXi

1 + exp ηk
TXi

Xi = 0

and update μk* ≡ μkbk and bk by solving the equations

∑
i = 1

n
E ∑

j = 1

nik
1 − Rik − 1 − Qik ∑

j = 1

nik gi jk Wi; μk, bk
1 + gi jk Wi; μk, bk

= 0

and

∑
i = 1

n
E ∑

j = 1

nik
Wi − ti jk 1 − Ri jk − 1 − Qik ∑

j = 1

nik
Wi − ti jk

gi jk Wi; μk, bk
1 + gi jk Wi; μk, bk

] = 0.

We update θ by ∑i = 1
n XiXi

T −1∑i = 1
n XiE W i , and update σW

2  by

n−1 ∑
i = 1

n
E Wi

2 − 2E Wi θTXi + θTXi
2 .

In the E-step, we evaluate the conditional expectations of E Ri jk , E νik , E νik
2 , E νikRi jk , 

E Qik , E W i , E W i
2 , E W i − ti jk 1 − Ri jk , and

E 1 − Qik ∑
j = 1

nik
Wi − ti jk

m1 gi jk Wi; μk, bk

1 + gi jk Wi; μk, bk

m2

given the observed data 𝒪i for m1 =0,1,2 and m2 = 1,2. Specifically, the conditional 

expectation of Qik given νik and Wi is given by

exp ηk
TXi ∏ j = 1

nik Ai jk νik; αk, σkϵ
2

exp ηk
TXi ∏ j = 1

nik Ai jk νik; αk, σkϵ
2 + ∏ j = 1

nik Di jk νik, Wi; μk, bk, αk, σkϵ
2

,
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and the conditional expectation of Rijk is given by

exp ηk
TXi ∏ j′ = 1

nik Ai j′k νik; αk, σkϵ
2

exp ηk
TXi ∏ j′ = 1

nik Ai j′k νik; αk, σkϵ
2 + ∏ j′ = 1

nik Di j′k νik, Wi; μk, bk, αk, σkϵ
2

+

Ai jk νik; αk, σkϵ
2

gi jk Wi; μk, bk Bi jk νik; α0k, σkϵ
2 + Ai jk νik; αk, σkϵ

2

exp ηk
TXi ∏ j′ = 1

nik Ai j′k νik; αk, σkϵ
2 + ∏ j′ = 1

nik Di j′k νik, Wi; μk, bk, αk, σkϵ
2

× ∏
j′ = 1

nik
Di j′k νik, Wi; μk, bk, αk, σkϵ

2 .

Note that the joint density of (νik, Wi) given 𝒪i is proportional to

hi Wi; σW
2 , σδ

2 ϕ νik; σkν
2 ∏k′ = 1

K qk′ Wi; ηk, μk, bk, α1k, σkϵ
2 , σkν

2

qk Wi; ηk, μk, bk, αk, σkϵ
2 , σkν

2

×
exp ηk

TXi ∏ j = 1
nik Ai jk νik; αk, σkϵ

2 + ∏ j = 1
nik Di jk νik, Wi; μk, bk, αk, σkϵ

2

1 + exp ηk
TXi

,

and the density of Wi given 𝒪i is proportional to 

∏k = 1
K qk W i; ηk, μk, bk, αk,σkϵ

2 , σkν
2 )hi W i; σW

2 , σδ
2 . We evaluate the conditional expectations 

through numerical integration over νik and Wi with two-dimensional Gauss-Hermite 

quadratures. We iterate between the E-step and M-step until convergence.
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Fig 1. 
Average estimated values of biomarkers over age among subgroups of subjects with 

different lengths of CAG expansion. The black, red, and green curves pertain to the 

subgroups of subjects with CAG expansion < 41, 41 ≤ CAG expansion < 43, and CAG 

expansion ≥ 43, respectively. The circles and bars indicate the average inflection points and 

their 95% confidence intervals. The dashed lines indicate the average HD age at onset. 

SDMT and Stroop-WO are identified as prognostic biomarkers using the proposed approach.
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Fig 2. 
Difference of the predicted HD age at onset and the observation age versus the observation 

age in the PREDICT-HD study. The red circles and black crosses pertain, respectively, to the 

uncensored and censored subjects. The blue dashed lines indicate variability ± σδ
2 + σW

2 .
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Fig 3. 
Average estimated values of biological and clinical markers over age among carriers and 

non-carriers of APOE ∊4 alleles. The black and red curves pertain to the subgroups of 

APOE carriers and non-carriers, respectively. The circles and bars indicate the average 

inflection points and their 95% confidence intervals. The dashed lines indicate the average 

early AD onset ages. Aβ42 is identified as a prognostic biomarker and MOCA, FAQ, and, 

CDRSB are confirmed as diagnostic markers.
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Fig 4. 
Average estimated values of biological and clinical markers over centralized age (years to 

age at onset of early AD). The black curves pertain to the proposed approach with the 

observed data. The circles and bars indicate the population average peak degeneration ages 

and their 95% confidence intervals. The red solid and dashed curves pertain, respectively, to 

imputing censored age at early AD by parent’s AD age at onset with a correlation of 0.3 or 

0.65 between child’s and parent’s onset ages.
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Table 1

Summary statistics for the proposed estimators in simulations

Parameter True Value n = 200 n = 400

Bias SE SEE CP Bias SE SEE CP

α01 0.4 −0.016 0.115 0.122 0.958 0.004 0.086 0.083 0.944

α02 0.6 0.005 0.106 0.107 0.945 0.000 0.076 0.072 0.928

α11 1.0 0.020 0.123 0.130 0.957 −0.003 0.089 0.090 0.944

0.8 −0.005 0.059 0.062 0.956 −0.002 0.043 0.043 0.945

0.7 −0.006 0.114 0.118 0.954 0.003 0.083 0.082 0.939

α12 1.0 0.004 0.125 0.127 0.947 −0.004 0.089 0.088 0.933

1.2 −0.001 0.063 0.064 0.943 −0.001 0.046 0.044 0.933

0.8 0.003 0.121 0.125 0.958 0.000 0.084 0.087 0.947

β1 0.8 0.001 0.017 0.017 0.950 0.000 0.012 0.012 0.953

β2 −0.4 0.001 0.014 0.014 0.951 0.000 0.010 0.010 0.958

σ1ϵ
2 0.5 −0.005 0.031 0.031 0.950 0.000 0.021 0.022 0.956

σ2ϵ
2 0.5 −0.003 0.025 0.026 0.957 −0.001 0.018 0.018 0.949

σ1ν
2 0.5 −0.009 0.066 0.067 0.956 −0.005 0.048 0.047 0.945

σ2ν
2 0.5 −0.014 0.070 0.067 0.933 −0.005 0.049 0.048 0.944

η1 −0.5 0.006 0.628 0.751 0.989 −0.014 0.423 0.442 0.974

0.5 0.004 0.383 0.459 0.989 −0.003 0.259 0.266 0.967

0.0 −0.012 0.550 0.642 0.990 0.018 0.393 0.395 0.958

η2 0.0 −0.011 0.462 0.483 0.979 −0.001 0.300 0.304 0.970

−0.5 −0.021 0.298 0.320 0.985 −0.001 0.198 0.196 0.966

0.5 0.000 0.489 0.509 0.971 0.009 0.330 0.329 0.956

μ1 −1.0 0.003 0.416 0.431 0.972 −0.002 0.290 0.292 0.951

μ2 1.6 −0.030 0.466 0.455 0.948 0.001 0.292 0.316 0.969

b1 −0.5 −0.006 0.115 0.116 0.962 −0.003 0.074 0.075 0.954

b2 0.5 0.006 0.088 0.090 0.964 0.001 0.056 0.061 0.962

θ 3.0 0.001 0.071 0.072 0.953 0.002 0.052 0.051 0.942

−0.2 0.000 0.052 0.052 0.946 −0.001 0.037 0.036 0.938

0.2 0.001 0.099 0.103 0.953 −0.002 0.074 0.073 0.946

σW
2 0.2 −0.010 0.047 0.044 0.943 −0.008 0.033 0.031 0.942
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Table 2

Summary statistics on prediction in simulations

n = 200 n = 400

Prediction Bias Adjusted SD Adjusted LS Bias Adjusted SD Adjusted LS

Both Biomarkers 0.001 0.079 0.036 −0.002 0.052 0.020

Biomarker 1 0.001 0.084 0.038 −0.002 0.060 0.022

Biomarker 2 0.001 0.085 0.037 −0.002 0.061 0.022
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Table 3

Estimation results for selected, parameters in the PREDICT-HD study

Parameter Est SEE p-value

μk Ocular 0.208 0.390 0.593

Brady −0.158 0.278 0.570

Chorea −0.008 0.275 0.977

SDMT −2.194 0.676 0.001

Stroop-WO −1.535 0.697 0.028

Smell-ID −0.963 0.807 0.232

θ Intercept 64.23 5.533 <0.0001

Baseline age 0.738 0.025 <0.0001

Years of education 0.182 0.071 0.010

Sex (Male) 0.881 0.416 0.034

CAG repeats length −1.090 0.107 <0.0001

σW
2 18.89 1.754 <0.0001
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Table 4

Estimation results for selected parameters in the ADNI study

Parameter Est SEE p-value

μk MOCA 1.622 0.470 0.0006

FAQ 1.558 0.287 <0.0001

CDRSB 1.488 0.255 <0.0001

ABETA −12.09 2.973 <0.0001

θ Intercept 13.14 4.795 0.006

Baseline age 0.956 0.061 <0.0001

Gender −0.310 0.570 0.587

Education 0.136 0.118 0.248

APOE ϵ4 allele −1.339 0.511 0.009

Baseline Total11 −0.357 0.087 <0.0001

Baseline FAQ −1.233 0.326 0.0002

σW
2 13.58 2.028 <0.0001
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